Normal VISTIBLETION

1	The wingspan of shelduck is normally distributed with mean 121.5 cm and standard deviation 5	.3 cm.·
حموت	Et al. 1 and	[3]
Jeroy.	₫	
	<i>!</i>	
4	The random waights Character 20.0 and a second control of the cont	

Jun 02

The random variable G has mean 20.0 and standard deviation σ . It is given that P(G > 15.0) = 0.6. Assume that G is normally distributed.

(i) (a) Find the value of σ .

[4]

(b) Given that P(G > g) = 0.4, find the value of g.

[2]

- (ii) It is known that no values of G are ever negative. State what this tells you about the assumption that G is normally distributed.
- My expenditure at a supermarket each week is modelled by a normal distribution with mean £65.00 and standard deviation £ σ . My expenditure exceeds £80.00 in a week with probability $\frac{1}{12}$.
- (i) Calculate the value of σ , giving your answer correct to 4 significant figures.
 - (ii) Calculate the probability that, in one randomly chosen week, my expenditure is less than £55.00.
- The random variable X has the distribution N(10, σ^2). It is given that P(X < 7) = p and P(X < 13) = 2p.
- (i) Show that the value of p is $\frac{1}{3}$.

[3]

[4]

(ii) Find the value of σ .

[3]

The percentage, X%, of a certain metal in an alloy can be modelled as having a normal distribution with mean 70 and standard deviation σ . It is given that P(X > 77) = 0.0808. Find the value of σ .

[4]

The random variable Y is normally distributed with mean μ and standard deviation 2.50. Given that P(Y > 12) = 0.3, find the value of μ .

3 The random variable X has the distribution $N(\mu, \sigma^2)$. It is given that

Jura-

$$P(X > 51) = 0.1841$$
 and $P(X > 60) = 0.0082$.

(i) Show that $\sigma = 6.00$, and find the value of μ .

[5]

(ii) The mean of 81 randomly chosen observations of X is denoted by \overline{X} . Find $P(\overline{X} > \mu - 1)$. [2]

Normal Dist (cont 1)

- The random variable X has the distribution $N(\mu, \sigma^2)$. It is given that $P(X_y > 2\mu) = 0.0228$.
- [3]

 μ (i) Find the value of μ in terms of σ .

In order to calculate the actual values of μ and σ , more information is required.

(ii) Explain why neither of the following extra pieces of information would enable you to work out the actual values of μ and σ :

$$\checkmark$$
(a) $P(X < 0) = 0.0228;$ [1]

(b)
$$P(X < \mu) = 0.5$$
. [1]

- (iii) Given that P(X < 7.0) = 0.7881, calculate the actual values of μ and σ . [4]
- The continuous random variable Y is normally distributed with mean 17.0 + 2.0d, where d can take different values. Thus, for example, if d = 4.0, the mean of Y is 25.0. The standard deviation of Y is 3.0 whatever the value of d.
 - (i) When d = 5.0, find P(Y < 25.0). [3]
 - (ii) Find the value of d for which P(Y < 40.0) = 0.975. [4]
- 3 The lifetime, T months, of properly made tap washers is modelled by a normal distribution with mean μ and standard deviation σ .
 - (i) It is given that P(T > 80.0) = 0.05 and P(T < 70.0) = 0.75. Find the values of μ and σ . [6]
 - (ii) Some tap washers are badly made and therefore have a very short lifetime. Give a reason why a normal distribution may not be a good model for the distribution of the lifetimes of all washers.

 [1]

