Mean and Variance

· .	
DOO	
7	1

Janet and John wanted to compare their daily journey times to work, so they each kept a record of their journey times for a few weeks.

- (i) Janet's daily journey times, x minutes, for a period of 25 days, were summarised by $\Sigma x = 2120$ and $\Sigma x^2 = 180044$. Calculate the mean and standard deviation of Janet's journey times. [3]
- (ii) John's journey times had a mean of 79.7 minutes and a standard deviation of 6.22 minutes. Describe briefly, in everyday terms, how Janet and John's journey times compare. [2]
- 7 At a primary school 20 boys and 25 girls did a test. The boys' scores, b, are summarised by

$$\Sigma b = 466$$
, $\Sigma b^2 = 11834$.

The mean of the girls' scores is 21.88 and the standard deviation of the girls' scores is 7.929, correct to 3 decimal places.

NN

(i) Find the mean of the boys' scores.

[1]

- 02
- (ii) Find the standard deviation of the boys' scores.

[3]

(iii) Find the mean score of all 45 students.

[2]

(iv) Find the standard deviation of the scores of all 45 students.

- [4]
- A student measured the temperature, t° C, of a liquid to the nearest 0.1 °C on 12 occasions. For each measurement he then calculated x = t 60. The values of x are given in the stem-and-leaf diagram below.

Na 04

1	3	6		
2	3 2 1 0	4	5	
3	1	l	3	5
4 5	0	1		
5	0			

Key: 1|3 means 1.3

(i) Calculate the mean of the temperatures.

[4]

(ii) Calculate the standard deviation of the temperatures.

- [3]
- 1 The times, x seconds, for 80 athletes to run 100 metres were coded using the relation y = x 11. The values of y are summarised by $\Sigma y = 35.2$ and $\Sigma y^2 = 175.08$. Find

(i) the mean and variance of y,

[3]

(ii) the mean and variance of x.

[2]

Mean + variance (cont)

A student carried out a statistics survey in a supermarket. At a checkout she recorded how many items each customer had in their shopping basket. The table below gives her results.

Number of items in the basket	4	5	6	7	8	9
Number of customers with that number of items	2	7	9	11	2	5

Jan 02

- (i) Calculate the mean and standard deviation of the number of items the customers had in their shopping baskets. [5]
- (ii) At the checkout each customer was given two free items. State the mean and the standard deviation of the total number of items the customers now had. [2]

Coding

A class of 20 students takes a test. The score, x, for each student was recorded by the teacher. The results are summarised by

$$\Sigma(x-10) = 208$$
 and $\Sigma(x-10)^2 = 2716$.

Jan

(i) Calculate the standard deviation of the 20 scores.

[3]

01

(ii) Show that $\Sigma x^2 = 8876$.

[3]

(iii) Two other students took the test later. Their scores were 18 and 16. Find the mean and standard deviation of all 22 scores. [4]

In a science experiment, each of 12 students measured the volume of gas, $x \, \text{cm}^3$, in a particular chemical experiment. The results can be summarised by

Nov

$$\Sigma(x-50) = 614$$
, $\Sigma(x-50)^2 = 32826$.

03

- (i) Find the mean and standard deviation of the volumes of gas measured by the 12 students. [4]
- (ii) Find the value of Σx^2 .

[4]

A mathematics student has been asked to calculate some properties of the volumes, x cm³, of a sample of 8 solid objects. To make the calculations easier he decides to subtract 200 cm³ from each volume. His results can be summarised as

$$\Sigma(x-200) = 17000, \qquad \Sigma(x-200)^2 = 86000000.$$

03

(i) Find the mean volume of the 8 solid objects.

[2]

(ii) Find the standard deviation of the volumes of the 8 solid objects.

[3]

(iii) Calculate the value of $\Sigma(x - 300)$.

[2]