Cumulative Frequency

6 The table below refers to the salaries, £x thousand, of each of a sample of 60 company Chief Executive Officers.

x	Frequency		
$0 < x \leqslant 100$	2		
$100 < x \le 200$	5		
$200 < x \le 300$	18		
$300 < x \le 400$	13		
$400 < x \le 500$	4		
$500 < x \le 600$	5		
$600 < x \le 700$	5		
$700 < x \le 900$	7		
900 < <i>x</i> ≤ 1100	0		
$1100 < x \le 1300$	1		

JW 04

(i) On graph paper draw a cumulative frequency graph to represent the data in the table. [4]

(ii) Use your cumulative frequency graph to estimate

(a) the median, q_2 , [1]

(b) the lower quartile, q_1 , [1]

(c) the upper quartile, q_3 .

For a given set of data any value which is unusually high or unusually low is called an outlier. One way of identifying an outlier is to find two boundary values, $A = q_1 - \frac{3}{2}(q_3 - q_1)$, the lower boundary, and $B = q_3 + \frac{3}{2}(q_3 - q_1)$, the upper boundary. Any values in the data which fall above the upper boundary or below the lower boundary are then defined to be outliers.

(iii) Calculate A and B for the data in the table, and hence state whether there are any outliers. [3]

A senior officer at a fire station carried out an investigation into the time taken for a fire engine to reach the scene of an emergency. He recorded the time, r minutes, between receiving a call for assistance and the arrival of the fire engine at the scene of the emergency. The results are given in the table below.

t	Frequency		
0 < t ≤ 2	6		
2 < t ≤ 4	8		
4 < 1 ≤ 6	7		
6 < t ≤ 10	9		
10 < t ≤ 20	20		

Nov

(i) On graph paper draw a cumulative frequency graph to represent the data.

[4]

(ii) From your graph estimate

(a) the median time,

[1]

(b) the upper quartile of the times.

[1]

(inulative treg. (cont 1)

6 The table below refers to the mass, $m \, \text{kg}$, of each of a sample of 60 dogs examined in a vet's surgery.

222		idal .	V-V			
Mass, m kg	$0 \le m < 5$	$5 \leqslant m < 10$	10 ≤ m < 15	$15 \le m < 20$	$20 \le m < 30$	$30 \le m < 50$
Frequency	2	7	17	19	8	7

JW.

(i) Draw a cumulative frequency graph for the data in the table.

[3]

[3]

- (ii) Use your cumulative frequency graph to estimate the median and the interquartile range for the data. [3]
- (iii) You are now given that the minimum mass in the sample of 60 dogs was 4 kg and the maximum was 47 kg. Use your estimates from part (ii) to draw a box-and-whisker plot of the data. [3]
- (iv) Give one feature of the data which you can deduce from a box-and-whisker plot more easily than from a cumulative frequency graph. [1]

Spec 6

The diagram shows the cumulative frequency graphs for the marks scored by the candidates in an examination. The 2000 candidates each took two papers; the upper curve shows the distribution of marks on paper 1 and the lower curve shows the distribution on paper 2. The maximum mark on each paper was 100.

- (i) Use the diagram to estimate the median mark for each of paper 1 and paper 2.
- (ii) State with a reason which of the two papers you think was the easier one. [2]
- (iii) To achieve grade A on paper 1 candidates had to score 66 marks out of 100. What mark on paper 2 gives equal proportions of candidates achieving grade A on the two papers? What is this proportion?
- (iv) The candidates' marks for the two papers could also be illustrated by means of a pair of box-and whisker plots. Give two brief comments comparing the usefulness of cumulative frequency graphs and box-and-whisker plots for representing the data. [2]

Cumulative Freq (cost 2)

As part of a statistics project a student recorded the amount of money spent, in £, by each of a random sample of 60 customers at checkout A in a supermarket. She also recorded the amount spent by each of a random sample of 60 customers who used another checkout at checkout B in the same supermarket. The results are given in the table below.

Amount spent	≤ £10	≤ £20	≤ £40	≤ £60	≤£100
Cumulative frequency for Checkout A	25	41	52	56	60
Cumulative frequency for Checkout B	10	24	45	54	60

The diagram shows the cumulative frequency graphs for the data.

- (i) Use the diagram to estimate the median amount spent at
 - (a) checkout A.

SM

(b) checkout B.

[3]

- (ii) Use the diagram to estimate the interquartile range of the amount spent at
 - (a) checkout A.

(b) checkout B.

[4]

- (iii) One of the two checkouts was an 'express' checkout. Customers are allowed a maximum of nine items when they pass through an express checkout. State, with a reason, which of the two checkouts, A or B, was more likely to have been the express checkout. [2]
- (iv) Calculate an estimate of the mean amount spent at checkout B.

[4]