Randon Variables Binomial Distribution

Spec	7 Items from a production line are examined for any defects. The probability that any item will be found to be defective is 0.15, independently of all other items.		
	 (i) A batch of 16 items is inspected. Using tables of cumulative binomial probabilities, or otherwise probability that 	vise, find	
ř	(a) at least 4 items in the batch are defective,	[2]	
	(b) exactly 4 items in the batch are defective.	[2]	
	(ii) Five batches, each containing 16 items, are taken.		
	(a) Find the probability that at most 2 of these 5 batches contain at least 4 defective items.	[4]	
	(b) Find the expected number of batches that contain at least 4 defective items.	[2]	
ئد			
1	The random variable X has a $B(18, 0.4)$ distribution. Using the tables of cumulative probabilities, and giving your answers correct to 3 significant figures, find	binomial	
Jan	(i) $P(X \leq 7)$,	•	
5an 02	(ii) $P(X > 6)$,	[1]	
	(iii) $P(8 < X \le 14)$.	[2]	
		[3]	
6	Every day I try to 'log on' to the internet. Over 100 days I found that I was successful at the first number of days, out of the seven, on which I am successful at the first attempt.		
1W1 03	(i) Suggest a model for the distribution of S, giving the values of any parameters.		
03	(ii) State two assumptions, in context, which are required to make this a good model.	[2]	
	(iii) Calculate $P(S = 4)$.	[2]	
	(iv) Calculate $P(S > E(S))$.	[3]	
	(5) L(3)).	[3]	
1	A university graduate applied for 10 jobs after she gained her degree. The probability of he offered any particular job is 0.2, independently of any other job. Let X be the number of jobs she is offered.	r being which	
6.0	(i) The distribution of X is $B(n, p)$. State the values of the parameters n and p.		
22	(ii) State the value of $E(X)$.	[1]	
23		[1]	
	(iii) Use the tables of cumulative binomial probabilities to find		
	(a) $P(X \le 4)$.	[1]	
	(b) $P(2 \le X < 6)$.	[2]	
		(-)	

Bironial (cont I)

3	2 (i) The random variable X has a B(12, 0.6) distribution. Using the tables of cumu probabilities, find	lative binomial
MW	(a) $P(X \leq 8)$,	[1]
03	(b) $P(4 \le X \le 7)$.	[3]
19030 3 - 10	(ii) The random variable Y has a B(7, 0.43) distribution. Find $P(Y = 4)$.	[3]
		e1
4	(a) The random variable W has a B(6, 0.7) distribution. Calculate the probability that is 3 or 6.	the value of W [3]
701	(b) The random variable V has a B(9, 0.8) distribution. The mean of this distribution is and the standard deviation by σ .	s denoted by μ
UL	(i) Find the value of μ .	[2]
	(ii) Use the table of cumulative binomial probabilities to find $P(V < \mu - \sigma)$.	[3]
6	Sheena travels to work by car. From long observation, she has found that she can park in parking space on 2 days out of 5 on average. Let X be the number of days out of a 5-week on which she can park in her favourite parking space.	-day working
	(i) State two assumptions which need to be made for a binomial model to be valid for th of the random variable X.	e distribution [2]
)w/	(ii) Assuming that $B(n, p)$ is a valid model for the distribution of X ,	
01	(a) state the values of the parameters n and p ,	[2]
	(b) show that $P(X > 3) = 0.0870$ correct to 3 significant figures.	[2]
	(iii) A 5-day working week in which Sheena can park in her favourite parking space 3 days is a 'good' week. Find the probability that, out of 7 randomly chosen 5 weeks, fewer than 2 are good weeks.	on more than day working [4]
7	Wall tiles of a certain make are packed in boxes of 20. Production procedures lead to in 3% of these tiles, on average. A box of tiles is classified as 'unsatisfactory' if it conta one imperfect tile.	
_	(i) What must be assumed for the number of imperfect tiles in a box to have a binomia	l distribution? [2]
05	(ii) Calculate the probability that a randomly chosen box is unsatisfactory.	[4]
-	Each day randomly chosen boxes are checked. The number of boxes checked, up to and first unsatisfactory box, is denoted by U .	including the
	(iii) Calculate $E(U)$.	[2]

(iv) If $U \ge 2 + E(U)$ then production is 'under control'. Calculate the probability that production is

[4]

under control.

Bironial (cont 2)

A company employs a large number of people in its city office and records show that 35% of the 3 employees live outside the city limits. The Finance Department employs 18 men and 23 women. The number of these men who live outside the city limits is denoted by X and the number of these women who live outside the city limits is denoted by Y.

(i) Assuming a binomial model, find $P(6 \le X \le 10)$.

[3]

(ii) Assuming a binomial model, find P(Y = 10).

[3]

(iii) Give a reason why binomial models might not be suitable.

[1]

On average 8% of the student population is vegetarian. 8

- (i) A party of 20 students goes on a field trip to a study centre in Scotland. The catering manager of the centre decides to prepare 2 vegetarian meals.
 - (a) Use a binomial distribution to find the probability that there are at most 2 vegetarians in the party of 20 students.
 - (b) State two assumptions needed for the use of a binomial distribution in part (a). [2]
- (ii) A group of n students goes on an exchange visit to Germany. The probability that this group contains at least one vegetarian is greater than 95%. Using trial and improvement, or otherwise, find the smallest possible value of n. [3]
- 5 Andy plays a lottery game once a week for 10 weeks. He knows that he has a probability of $\frac{1}{57}$ of winning each time he plays. Let X be the number of weeks out of 10 in which Andy wins.

- (i) State the distribution of X, giving the values of any parameters, and state one assumption required to use this distribution as a suitable model. [3]
- (ii) Calculate

(a) P(X = 2),

[3]

(b) P(X > 2).

[3]

(iii) Write down the value of E(X).

[1]

7 The random variable W has a B(6, 0.4) distribution. Calculate the probability that the value of W is an odd number.

(b) The random variable X has a B(5, p) distribution, where $p \neq 0$. Given that E(X) = 3Var(X), find P(X=0). [3]

(c) The random variable Y has a B(12, p) distribution, where $p \neq 0$. Given that

$$P(Y = 11) = P(Y = 12),$$

find the value of p.

[3]